Abstract
The problem of the optimal control of a long thin rigid inclusion in an elastic body intersecting the external boundary is investigated. It is assumed that the inclusion delaminates, forming a crack between it and the body. Non-linear boundary conditions are specified on the edge of the crack that exclude the mutual penetration of the opposite edges. The solvability of the optimal control problem, in which the performance functional characterizes the displacement of the points of the rigid inclusion and the length of the inclusion located within the elastic body serves as the control function, is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.