Abstract

This paper addresses a nonlinear partial differential control system arising in population dynamics. The system consist of three diffusion equations describing the evolutions of three biological species: prey, predator, and food for the prey or vegetation. The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process. We study the problem of minimization of a given integral cost functional over solutions of the above system. The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable. Some relaxation-type results for the minimization problem are obtained and the existence of a nearly optimal solution is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.