Abstract

This work concerns the optimal control of a passive particle in viscous flows. This is relevant since, while there are many studies on optimal control in inviscid flows, there is little to no work in this context for viscous flows, and viscosity cannot always be neglected. Furthermore, in many tasks, there is a need to reduce the energy spent; thus, energy-optimal solutions to problems are important. The aim of this work is to investigate how to optimally move a passive particle advected by a Lamb–Oseen (viscous) vortex between two given points in space in a given time interval while minimising the energy spent on this process. We take a control acting only on the radial component of the motion, and, by using the Pontryagin’s Maximum Principle, we find an explicit time-dependent extremal. We also analyse how the energy cost changes with the viscosity of the flow.The problem is transformed into a parameter search problem with two parameters related to the radial and angular coordinates of the initial point. The energy cost of the process increases with viscosity as long as the passive particle maintains the number of full turns it makes around the vortex. However, the energy cost increases if the increase in viscosity forces the particle to make fewer full revolutions around the vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.