Abstract

Magnetic bearings are non-contacting, with the rotor being suspended between electromagnets, and therefore they can eliminate the need for lube oil and reduce machinery wear. The magnetic bearing is naturally unstable, and very nonlinear. This paper proposes a method designed to suppress the motion of a nonlinear magnetic bearing system rotor due to base excitation. The method combines PD feedback with feedforward optimal control, where a measured base motion is used to select a control signal designed to suppress the rotor response. The signal is generated from a combination of subharmonic frequencies and optimized coefficients stored in a lookup table. The trigonometric collocation method (TCM) is used to generate solutions for the four degree-of-freedom system made up of a shaft suspended at each end by a magnetic bearing. The TCM method uses a trigonometric series to simulate the multiharmonic behavior of each degree-of-freedom of strongly nonlinear systems. The method is easy to use and its advantage over numerical methods is that it demands less computation, particularly with higher numbers of degrees-of-freedom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call