Abstract

In this brief, we extend the simulation-based approximate dynamic programming (ADP) method to optimal feedback control of fed-batch reactors. We consider a free-end problem, wherein the batch time is considered in finding the optimal feeding strategy in addition to the final time productivity. In ADP, the optimal solution is parameterized in the form of profit-to-go function. The original definition of profit-to-go is modified to include the decision of batch termination. Simulations from heuristic feeding policies generate the initial profit-to-go versus state data. An artificial neural network then approximates profit-to-go as a function of process state. Iterations of the Bellman equation are used to improve the profit-to-go function approximator. The profit-to-go function approximator thus obtained, is then implemented in an online controller. This method is applied to cloned invertase expression in Saccharomyces cerevisiae in a fed-batch bioreactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.