Abstract

Optimal control method for active vibration control of linear time-delay systems is investigated in this paper. In terms of two cases that time delay is integer and non-integer times of sampling period, motion equation with time delay is transformed as standard discrete forms which contain no time delay by using zero order holder respectively. Discrete quadratic function is used as objective function in design of controller to guarantee good control efficiency on sampling points. In every step of computation of the deduced controller, it contains not only current step of state feedback but also linear combination of some former steps of control. Because the controller is deduced directly from time-delay differential equation, system stability can be guaranteed easily, thus this method is generally applicable to ordinary control systems. The performance of the control method proposed and system stability when using this method are all demonstrated by numerical simulation results. Simulation results demonstrate that the presented method is a viable and attractive control strategy for applications to active vibration control. Instability in responses occurs possibly if the systems with time delay are controlled using controller designed in case of no time delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call