Abstract
With the growing plug-in hybrid electric vehicles (PHEVs) integrated into the power grid, a large number of onboard batteries need to be charged via the infrastructure such as dedicated charging station and the parking lots. In this paper, a control framework is proposed to manage the charging and discharging by using vehicle-to-grid technology. In order to analyze the effect of the PHEV charging to the grid and the corresponding coordinated strategies, this paper describes a simulation model. Initially, the uncontrolled PHEV charging scenarios are performed. The load flow algorithm is applied to calculate the power distribution and power losses on a 33-bus test system. The results indicate the inadequacy of the current power system capacity for the growing electricity demand from PHEVs. Therefore, an optimal control algorithm is derived for PHEV charging and discharging to minimize the total real power loss. Compared to the uncontrolled PHEV charging results, the optimal control algorithm can achieve the maximum loss reduction. Moreover, the voltage drop at each node is limited within a tolerable range while the tightened branch current restrictions are satisfied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.