Abstract

AbstractThe unit commitment (UC) problem is a well-known combinatorial optimization problem arising in operations planning of power systems. It involves deciding both the scheduling of power units, when each unit should be turned on or off, and the economic dispatch problem, how much power each of the on units should produce, in order to meet power demand at minimum cost while satisfying a set of operational and technological constraints. This problem is typically formulated as nonlinear mixed-integer programming problem and has been solved in the literature by a huge variety of optimization methods, ranging from exact methods (such as dynamic programming and branch-and-bound) to heuristic methods (genetic algorithms, simulated annealing, and particle swarm). Here, we discuss how the UC problem can be formulated with an optimal control model, describe previous discrete-time optimal control models, and propose a continuous-time optimal control model. The continuous-time optimal control formulation proposed has the advantage of involving only real-valued decision variables (controls) and enables extra degrees of freedom as well as more accuracy, since it allows to consider sets of demand data that are not sampled hourly.KeywordsUnit commitment problemPower systems planningNonlinear optimizationMixed-integer programmingOptimal control

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.