Abstract
This article concerns the optimal control problem for internal gravitational waves in a model with additive "white noise". This mathematical models based on the stochasticSobolev equation, Dirichlet boundary conditions, and a Cauchy initial condition. The inhomogeneity describes random heterogeneities of the medium and fluctuations. By white noise we realize the Nelson-Gliklikh derivative of the Wiener process. The study was carried out within the framework of the theory of relatively bounded operators and the theory of Sobolev-type stochastic equations of higher order and the theory of (semi) groups of operators. We show the existence and uniqueness of a strong solutions, and obtain sufficient conditions for the existence of an optimal control of such solutions. The theorem about the existence and uniqueness of the optimal control is based on the works of J.-L. Lyons.
 For more information see https://ejde.math.txstate.edu/Volumes/2021/51/abstr.html
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.