Abstract

Inertial reorientation of airborne articulated bodies has been an active area of research in the robotics community, as this behavior can help guide dynamic robots to a safe landing with minimal damage. The main objective of this work is emulating the aggressive and large angle correction maneuvers, like somersaults, that are performed by human divers. To this end, a planar three link robot, called DiverBot, is proposed. By considering a gravity-free scenario, a local connection is obtained between joint angles and the body orientation, resulting in a reduction in the system dynamics. An optimal control policy applied on this reduced configuration space yielded diving maneuvers that are dynamically feasible. Numerical results show that the DiverBot can execute one somersault without drift and multiple somersaults with minimal drift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.