Abstract

We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions, considering reinfection and post-exposure interventions. They depend on the parameters of the model and reduce effectively the number of active infectious and persistent latent individuals. The time that the optimal controls are at the upper bound increase with the transmission coefficient. A general explicit expression for the basic reproduction number is obtained and its sensitivity with respect to the model parameters is discussed. Numerical results show the usefulness of the optimization strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.