Abstract
In this work, we determine the optimal control for free-radical methyl methacrylate polymerization using a bifunctional initiator in a non-isothermal batch reactor. A detailed unsteady-state model of the process is employed. Four different optimal control objectives are realized, each of which optimizes a given variable simultaneously with the specification of another. The first two objectives involve the maximization of monomer conversion in a specified operation time, and the minimization of operation time for a specified, final monomer conversion. The last two objectives involve the maximization of monomer conversion for specified, final number and weight average polymer molecular weights. The temperature of heat-exchange fluid inside reactor jacket is considered as a control function of an independent variable. To meet the specification of an optimization variable other than time, the differential model of batch process is derived in the range of specified variable. Equations are provided for Jacobian evaluations to help in the accurate solution of process model. A genetic algorithms-based optimal control method is applied to realize the four optimal control objectives. The results show that optimal control can significantly enhance the performance of the batch polymerization process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.