Abstract

The optimal control design of the ground-vehicle active suspension system is presented. The active suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the system are derived by applying Newton’s second law. The control law of the active suspension system is designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the active suspension system to a passive suspension system. Both suspension systems are simulated in computer. The simulation results show that the active suspension system significantly improves the vehicle ride comfort of the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical velocity, and 1.77% RMS of vertical acceleration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.