Abstract

Abstract Rift Valley Fever (RVF) virus is a mosquito‐born pathogen that infects livestock but it also has the capability to infect humans through direct or indirect contact with blood or organs of infected animals and by bites from infected mosquitos. The economic and social cost of the disease to rural populations can lead to a cascade of negative effects on the sustainability of animal and human populations. Vaccines exist to protect against this disease. Through a compartment model depicting the interactions leading to the spread of RVF in Aedes and Culex mosquitos and a livestock population, an optimal control problem is developed to minimize the number of vaccinated livestock at the final time while minimizing the negative effects of the infected Aedes and Culex mosquitos and the cost of the vaccination process. The unique optimal vaccination strategy is produced for given high transmission parameters and numerical results portray that vaccination depends on the level of effectiveness of the protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.