Abstract

Kaposi’s sarcoma (KS) is a malignant disorder of lymphatic endothelial origin that can have two main variants: AIDS-related KS (AKS) and non-AIDS related KS (NAKS) that all share a causal relationship with the human herpesvirus-8 (KSHV or HHV-8). We develop a mathematical model that accounts for B-cells latently and lytically infected with HHV-8 as well as the innate and adaptive arms of the immune system. As a sequel to numerous studies that have investigated the inhibition of HHV-8 endocytosis and reactivation of HHV-8 replication, we employ optimal control strategy to obtain treatment efficacies for these two therapeutic approaches. We have shown that when [Formula: see text] of the B-cell infections result in latency, administration of high efficacy drugs that inhibit entry and reactivation of latently infected B-cells leads to the clearance of KS as the population of infected cells cannot be sustained. Our results also reveal that at [Formula: see text] latency of B-cells, the therapy could produce similar results if the drug that targets viral entry is of moderate efficacy but the efficacy of the drug inhibiting reactivation is considerably more than [Formula: see text] Administration of the same drugs but both at moderate efficacy levels leads to the depletion of both uninfected B- and progenitor cells, a scenario which can lead to the growth of KS variants. When [Formula: see text] of the B-cell infections result in latency, administration with high efficacy drugs reduces the viral entry of HHV-8 but as [Formula: see text] of the infected B-cells are productive, this event leads to production of HHV-8 which ultimately results in more progenitor cells getting infected and the growth of KS. Our findings have the potential to offer more effective therapeutic approaches in the treatment of NAKS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.