Abstract

Medical treatment, vaccination, and quarantine are the most efficacious controls in preventing the spread of contagious epidemics such as COVID-19. In this paper, we demonstrate the global stability of the endemic and disease-free equilibrium by using the Lyapunov function. Moreover, we apply the three measures to minimize the density of infected people and also reduce the cost of controls. Furthermore, we use the Pontryagin Minimum Principle in order to characterize the optimal controls. Finally, we execute some numerical simulations to approve and verify our theoretical results using the fourth order Runge-Kutta approximation through Matlab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.