Abstract

This work is focused on optimal control of mechanical compression refrigeration systems. A reduced-order state-space model based on the moving boundary approach is proposed for the canonical cycle, which eases the controller design. The optimal cycle (that satisfying the cooling demand while maximizing efficiency) is defined by three variables, but only two inputs are available, therefore the controllability of the proposed model is studied. It is shown through optimization simulations how optimal cycles for a range of the cooling demand turn out not to be achieved by keeping the degree of superheating to a minimum. The Practical NMPC and a well-known feedback-plus-feedforward strategy from the literature are compared in simulation, both showing trouble in reaching the optimal cycle, which agrees with the controllability study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.