Abstract

AbstractResearchers have found that obtaining optimal solutions for groundwater resource‐planning problems, while simultaneously considering time‐varying pumping rates, is a challenging task. This study integrates an artificial neural network (ANN) and constrained differential dynamic programming (CDDP) as simulation‐optimization model, called ANN‐CDDP. Optimal solutions for a groundwater resource‐planning problem are determined while simultaneously considering time‐varying pumping rates. A trained ANN is used as the transition function to predict ground water table under variable pumping conditions. The results show that the ANN‐CDDP reduces computational time by as much as 94·5% when compared to the time required by the conventional model. The proposed optimization model saves a considerable amount of computational time for solving large‐scale problems. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call