Abstract

This paper proposed a Mixed Binary Linear Programming (MBLP) approach to find the optimal size of some components of a Smart Building (SB) attempting to reduce the overall cost. The considered SB is equipped with local resources such as Photovoltaic (PV) panels, Electrical Vehicles (EVs), and the Battery Energy Storage System (BESS). Moreover, the SB is only connected with the grid by an Energy Management System (EMS) in which the whole SB has a single Contract Power (CP) such that EMS manages the power flow among external grid, local resources, apartments, and common services, for the goal of reducing the electricity bill. Hence, the wrong choice of CP and BESS capacity will impose unnecessary charges on the electricity bill. As a results, EMS has played a crucial role in SB in determining the best CP and BESS values. The obtained results of this work show the efficiency of the model in which by finding the optimal capacity of CP and BESS, the electricity bill improves by a 34% reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call