Abstract
The use of ice as structural material has two main concerns: the low strength and the brittle failure of the structures. With the aim of finding a solution to these problems, an experimental campaign, performed on fiber-reinforced ice (FRI) samples, made with plain water and bio-fibers, is presented in this paper. In total, 12 ice prisms were cast at − 18 °C with a different content of fibers, and then tested in three-point bending and uniaxial compression. Test results indicate that the presence of a reinforcement increases both flexural and compressive strength with respect to plain ice. Moreover, FRI is a tougher material, as multiple cracking and deflection hardening behavior can be observed in the flexural tests. However, the mechanical performances of plain ice are not always enhanced by the fiber-reinforcement. Therefore, an empirical model, capable of predicting the optimal content of bio-fibers, is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.