Abstract
I study how boundedly rational agents can learn a “good” solution to an infinite horizon optimal consumption problem under uncertainty and liquidity constraints. Using an empirically plausible theory of learning I propose a class of adaptive learning algorithms that agents might use to choose a consumption rule. I show that the algorithm always has a globally asymptotically stable consumption rule, which is optimal. Additionally, I present extensions of the model to finite horizon settings, where agents have finite lives and life-cycle income patterns. This provides a simple and parsimonious model of consumption for large agent based models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.