Abstract

This manuscript derives optimal consumption and investment strategies for risk-averse investors under the 4/2 stochastic volatility class of models. We work under an expected utility (EUT) framework and consider a Constant Relative Risk Aversion (CRRA) investor, who may also be ambiguity-averse. The corresponding Hamilton–Jacobi–Bellman (HJB) and HJB–Isaacs (HJBI) equations are solved in closed-form for a subset of the parametric space and under some restrictions on the portfolio setting, for complete markets. Conditions for proper changes of measure and well-defined solutions are provided. These are the first analytical solutions for the 4/2 stochastic volatility model and the embedded 3/2 model for the type of excess returns established in the literature. We numerically illustrate the differences between the 4/2 model and the embedded cases of the 1/2 model (Heston) as well as the 3/2 model under the same data, and for two main cases: risk-averse investor in a complete market with consumption, and ambiguity-averse investor in a complete market with no consumption. In general, the 4/2 and 1/2 models recommend similar levels of consumption and exposure, while the 3/2 leads to significantly different recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.