Abstract

We study an optimal consumption and investment problem in a possibly incomplete market with general, not necessarily convex, stochastic constraints. We provide explicit solutions for investors with exponential, logarithmic as well as power utility and show that they are unique if the constraints are convex. Our approach is based on martingale methods that rely on results on the existence and uniqueness of solutions to BSDEs with drivers of quadratic growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.