Abstract

Multi-Agent Systems are susceptible to external disturbances, sensor failures or collapse of communication channel/media. Such failures disconnect the agent network and thereby hamper the consensus of the system. Quick recovery of consensus is vital to continue the normal operation of an agent-based system. However, only limited works in the past have investigated the problem of recovering the consensus of an agent-based system in the event of a failure. This work proposes a novel algorithmic approach to recover the lost consensus, when an agent-based system is subject to the failure of an agent. The main focus of the algorithm is to reconnect the multi-agent network in a way so as to increase the connectivity of the network, post recovery. The proposed algorithm may be applied to both linear and non-linear continuous-time consensus protocols. To verify the efficiency of the proposed algorithm, it has been applied and tested on two multi-agent networks. The results, thus obtained, have been compared with other state-of-the-art recovery algorithms. Finally, it has been established that the proposed algorithm achieves better connectivity and therefore, faster consensus when compared to the other state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.