Abstract

Under the worldwide carbon neutralization targets, concentrating solar power (CSP) is arousing great attention. With the thermal energy storage (TES), CSP is friendly to the power system operation by supplying controllable renewable energy. The capacities of its solar field and TES are essential parameters for maximizing the profit of a CSP plant. This paper formulates an explicit expression of the CSP plant's profit instead of using a simulation-based method. Then, an unconstrained optimization model is proposed to calculate its optimal configuration directly. This model provides insights into the optimal configuration of CSP with different penetrations of wind power in the case study. The results show that to obtain a better profit for the CSP plant, large solar multiple (more than 3.0) and TES (more than 13 h) are preferred to collaborate with high penetration of wind and photovoltaic plants. The effectiveness of the proposed method is verified compared to the enumeration searching method. The economy and feasibility of installing an electric heater (EH) in CSP are also demonstrated. Generally, the optimal investment in EH is linearly correlated to the penetration of variable energy resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call