Abstract

This paper studies the configuration for intersecting flows of aircraft. Intersections of aircraft flows can be considered as basic building blocks for air traffic networks, and traffic networks can be designed through finding optimal arrangements of intersections whose conflict zones do not overlap. A conflict zone is defined as a minimal circular area centered at the intersection of two flows which allows aircraft approaching the intersections to resolve conflict completely within the conflict zone. This paper derives the relationship between the size of a conflict zone and the intersection angle of the two flows. Such a relationship guides to find an optimal configuration for intersecting aircraft flows. An example involving n converging flows of aircraft demonstrates the efficiency of the proposed configuration of intersections: the result of conflict resolution shows a greatly reduced traffic complexity compared with the solution derived from our previous study; the complexity metric is reduced from O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> ) to O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.