Abstract
In this study, a renewable energy-based hybrid system was designed capable of meeting known electrical load requirements, as the system includes a combination of photovoltaic cells (PV), a fuel cell, batteries, an electrolyzer, and a hydrogen tank. This hybrid system supplies the cell tower located in the village of Ouanougha, country of Algeria with the annual electrical energy demand of 47 kWh/day. A Hybrid optimization model for electric renewable (HOMER) simulation software is utilized for modeling, optimize sizing, simulation as well as performing the techno-economic analysis of this hybrid system. HOMER software gives several optimum system configurations, which are compared among themselves for identifying the optimum system configuration. The comparison is based on the total net present cost (TNPC) and levelized cost of energy (LCOE). Other cost parameters can be provided such as initial capital cost, operation, and maintenance cost (O&M). The simulation result shows that, the proposed hybrid system has the lowest TNPC, LCOE and Initial capital, which are 64,384 $, 0.259 \$/kWh and 35,850 \$, respectively. On the other hand, it proved that the hybrid system is environmentally friendly and without producing any polluting gas. This paper also focuses on the operational strategy for feeding the load, as the results show that the hybrid system generally fulfills the requirements of the load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of New Materials for Electrochemical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.