Abstract

To maximize the utilization of renewable energy (RE) as much as possible in cold areas while reducing traditional energy use and carbon dioxide emissions, a three-layer configuration optimization and scheduling model considering a multi-park integrated energy system (MPIES), a shared energy storage power station (SESPS), and a hydrogen refueling station (HRS) cooperation based on the Wasserstein generative adversarial networks, the simultaneous backward reduction technique, and the Quantity-Contour (WGAN-SBR_QC) method is proposed. Firstly, the WGAN-SBR_QC method is used to generate typical scenarios of RE output. Secondly, a three-layer configuration and schedule optimization model is constructed using MPIES, SESPS, and HRS. Finally, the model’s validity is investigated by selecting a multi-park in Eastern Mongolia. The results show that: (1) the typical scenario of RE output improved the overall robustness of the system. (2) The profits of the MPIES and HRS increased by 1.84% and 52.68%, respectively, and the SESPS profit increased considerably. (3) The proposed approach increased RE utilization to 99.47% while reducing carbon emissions by 32.67%. Thus, this model is a reference for complex energy system configuration and scheduling, as well as a means of encouraging RE use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call