Abstract
Conditions were characterized for maximizing the uptake of exogenous mammalian cell DNA by hypoxanthine-guanine phosphoribosyltransferase-deficient Chinese hamster lung cells. Recipient cell cultures in an exponential growth phase were found to be more competent in taking up DNA than stationary cultures. Polyornithine enhanced the uptake of exogenous DNA more reproducibly and to a greater extent than did any of the other facilitators tested (DEAE-dextran, CaCl 2, latex spheres, spermine, polylysine and polyarginine). Maximal DNA incorporation occurred when polyornithine and DNA were mixed together prior to inoculation. About 25â30% of the DNA inoculum became deoxyribonuclease-resistant in a typical experiment utilizing polyornithine as the facilitator. Both homologous and heterologous exogenous DNAs rapidly became associated with recipient cell nuclei: approximately 95% of the deoxyribonuclease-resistant donor DNA was nuclear-associated 15 min after inoculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.