Abstract

A method of inducing dopamine (DA) neurons from mouse embryonic stem (ES) cells by stromal cell-derived inducing activity (SDIA) was previously reported. When transplanted, SDIA-induced DA neurons integrate into the mouse striatum and remain positive for tyrosine hydroxylase (TH) expression. In the present study, to optimize the transplantation efficiency, we treated mouse ES cells with SDIA for various numbers of days (8-14 days). SDIA-treated ES cell colonies were isolated by papain treatment and then grafted into the 6-hydroxydopamine (6-OHDA)-lesioned mouse striatum. The ratio of the number of surviving TH-positive cells to the total number of grafted cells was highest when ES cells were treated with SDIA for 12 days before transplantation. This ratio revealed that grafting cell colonies was more efficient for obtaining TH-positive cells in vivo than grafting cell suspensions. When we grafted a cell suspension of 2 x 10(5), 2 x 10(4), or 2 x 10(3) cells into the 6-OHDA-lesioned mouse striatum, we observed only a few surviving TH-positive cells. In conclusion, inducing DA neurons from mouse ES cells by SDIA for 12 days and grafting cell colonies into mouse striatum was the most effective method for the survival of TH-positive neurons in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.