Abstract

We determine the optimal parameters for a simple and efficient scheme of dispersive readout of a qubit. Depending on the qubit state (ground or excited), the resonance of a cavity is shifted either to the red or to the blue side. Qubit state is inferred by detecting the photon number transmitted through the cavity. It turns out that this kind of detection provides better measurement fidelity than the detection of the presence or absence of photons only. We show that radiating the cavity on either of the frequencies it shifts to results in a suboptimal measurement. The optimal frequency of the probe photons is determined, as well as the optimal ratio of the shift to the resonator leakage. It is shown that to maximize the fidelity of a long-lasting measurement, it is sufficient to use the parameters optimizing the signal-to-noise ratio in the photon count. One can reach 99% fidelity for a single-shot measurement in various physical realizations of the scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.