Abstract

Abstract Contemporary and future high spectral resolution sounders represent a significant technical advancement for environmental and meteorological prediction and monitoring. Given their large volume of spectral observations, the use of robust data compression techniques will be beneficial to data transmission and storage. In this paper, a novel adaptive vector quantization (VQ)-based linear prediction (AVQLP) method for lossless compression of high spectral resolution sounder data is proposed. The AVQLP method optimally adjusts the quantization codebook sizes to yield the maximum compression on prediction residuals and side information. The method outperforms the state-of-the-art compression methods [Joint Photographic Experts Group (JPEG)-LS, JPEG2000 Parts 1 and 2, Consultative Committee for Space Data Systems (CCSDS) Image Data Compression (IDC) 5/3, Context-Based Adaptive Lossless Image Coding (CALIC), and 3D Set Partitioning in Hierarchical Trees (SPIHT)] and achieves a new high in lossless compression for the standard test set of 10 NASA Atmospheric Infrared Sounder (AIRS) granules. It also compares favorably in terms of computational efficiency and compression gain to recently reported adaptive clustering methods for lossless compression of high spectral resolution data. Given its superior compression performance, the AVQLP method is well suited to ground operation of high spectral resolution satellite data compression for rebroadcast and archiving purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call