Abstract

Ethnopharmacological relevanceThe herbal pair of Trichosanthis Pericarpium (TP) - Trichosanthis Radix (TR) can be seen in the famous formula “Beimu Gualou San”. It is a commonly selected combination of medicinal herbs for the treatment of cough with lung heat. Both drugs are derived from Trichosanthes kirilowii Maxim, a medicinal plant known for its ability to clear heat, resolve phlegm, produce saliva, and alleviate dryness. However, the optimal combination ratio and active ingredients of TP-TR have yet to be determined. Aim of the studyThis study aims to investigate the optimal combination ratio of TP-TR and its anti-inflammatory active ingredients in cough treatment. Materials and methodsA zebrafish (Danio rerio) inflammatory injury model and response surface method were applied in the present study to determine the appropriate proportion of TP-TR. Chemical constituents in TP-TR were identified using HPLC-ELSD and UPLC-MS/MS methods. Subsequently, a cough mouse model was created using an ammonia solution to evaluate the effectiveness of the optimal TP-TR ratio. Network pharmacology and intestinal flora sequencing were used to validate the anti-inflammatory components of TP-TR. ResultsThe herbal pair of TP - TR at the ratio of 1:2 showed an optimal anti-inflammatory effect, with a composite inflammatory factor score of 119.645 in the zebrafish experiment. TP-TR combination facilitated the dissolution of glutamine, inosine, cytosine, isoquercetin, and other substances. In the animal model, the TP-TR (1:2) treatment significantly reduced the frequency of coughs and prolonged cough latency compared to the model group. Results of the network pharmacology indicated that inflammatory-related factors such as TLR4, STAT3, EGFR, and AKT1 played crucial roles in cough treatment with TP-TR, consistent with the validation experiment. The 16s rDNA sequencing results revealed a significant increase in the abundance of Clostridia_UCG-014, Lachnospiraceae, Christenella, Ruminococcus, and other species in the intestinal tract of mice after modelling. TP-TR (1:2) reduced the abundance of pro-inflammatory flora such as Clostridium_UCG-014 and Lachnospira, which were closely associated with L-lysine and trans-4-hydroxy-L-proline present in TP-TR according to correlation analysis. ConclusionTP-TR may promote the dissolution of glutamine, thymidine, inosine, cytosine, isoquercetin, and other components through their combination, thereby regulating the abundance of Clostridium_UCG-014 and Lachnospira and exerting an antitussive effect. This study, for the first time, showed that TP-TR at a 1:2 ratio exhibits superior anti-inflammatory effects. In addition to inflammatory mediators like EGFR, TLR4, AKT1, and STAT3, gut microbes could also serve as potential regulatory targets of TP-TR in the treatment of cough. 2'-Deoxyguanosine monohydrate, L-lysine, L-leucine, γ-aminobutyric acid, L-valine, L-tryptophan, L-proline, trans-4-hydroxy-L-proline, L-methionine, uridine, 2'-deoxyinosine, guanosine, cucurbitacin B and cucurbitacin D were identified as its anti-inflammatory active ingredients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.