Abstract

We prove a tight lower bound for generic protocols for secure multicast key distribution where the messages sent by the group manager for rekeying the group are obtained by arbitrarily nested application of a symmetric-key encryption scheme, with random or pseudorandom keys. Our lower bound shows that the amortized cost of updating the group key for a secure multicast protocol (measured as the number of messages transmitted per membership change) is log2(n) + o(1). This lower bound matches (up to a small additive constant) the upper bound of Canetti, Garay, Itkis, Micciancio, Naor and Pinkas (Infocomm 1999), and is essentially optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call