Abstract

This work presents a collaborative scheme for the end-users in a smart building with multiple housing units. This approach determines a day-ahead operational plan that provides demand-response services by taking into account the amount of energy consumed per household, the use of shared storage and solar panels, and the amount of shifted load. We use a biobjective optimization model to trade off total user satisfaction versus total cost of energy consumption. The optimization works in combination with a price structure based on time and level of use that encourages load shifting and benefits the participants. Computational experiments and an extensive sensitivity analysis validate the performance of the proposed approach and help to clarify its strengths, its limits, and the requirements for ensuring the desired outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.