Abstract
During a Nuclear Medicine project that called for the optimal design of a coded aperture we found that low-throughput masks do not always provide a Signal-to-Noise Ratio (SNR) advantage. In this paper, we present the simulations of the performance of some coded aperture patterns chosen from different families and compare the results with theoretical predictions. A general expression for the SNR and its particular form for different patterns are provided. The choice of the optimal pattern family is discussed with reference to the characteristics of the object to be imaged and in light of the effect of near-field artifacts. No-Two-Holes-Touching (NTHT) arrays based on Modified Uniformly Redundant Arrays (MURAs) proved to offer the best compromise between SNR performance and practical fabrication constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.