Abstract

At some nominal recording density, the read signal in digital magnetic recording resembles a Class IV partial response (PR4) signal and, hence, may be equalized to the PR4 shape with relatively little noise enhancement. When coding is added, for a fixed user density, the recording density must increase as a result of coding overhead, and the read signal will resemble PR4 to a lesser extent. Equalization to PR4 in this case will produce excessive noise enhancement. Thus, coding overhead (or rate) must be selected for optimum tradeoff between code strength and noise enhancement. Toward this end, we provide results for high-rate concatenated codes, assuming a Lorentzian recording channel model. In addition to examining optimal code rates, we compare parallel and serial concatenated code performance on the PR4 channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.