Abstract

Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this population. Evidence indicates that providers perform CC at rates both higher and lower than recommended. Video recording of DR CRP has been increasingly applied and observational studies of what is actually done in relation to outcomes could be useful. Different CC rates and ratios should also be investigated under controlled experimental conditions in animals during perinatal transition.

Highlights

  • Observational data indicate that prolonged cardiopulmonary resuscitation (CPR) in the delivery room (DR) is associated with poor survival and neurologic outcomes [1]

  • The aim of this review is to provide an overview about the current knowledge of optimal chest compressions (CC) rate and C:V ratio during neonatal CPR

  • Asphyxiated piglets were randomized to 3:1 C:V CPR or continuous CC with asynchronous ventilation (CCaV) CPR (CC rate 90/min)

Read more

Summary

Introduction

Observational data indicate that prolonged cardiopulmonary resuscitation (CPR) in the delivery room (DR) is associated with poor survival and neurologic outcomes [1]. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved cerebral perfusion ensures brain cell survival during CPR, whereas enhanced myocardial perfusion increases the likelihood of a fast return of spontaneous circulation (ROSC). Optimizing CC quality may improve outcomes both by preserving cerebral blood flow during cardiac arrest and by reducing recovery time. The effectiveness of CC is influenced by (i) CC rate, (ii) CC to ventilation (C:V) ratio, and (iii) applied force, which are all influenced by the CC provider (Figure 1). Besides CPR mechanics and mathematical modeling, educational, emotional, and physical aspects of provider performance need to be considered when addressing the optimal CC algorithm. The physiological effects in the infant determine the most optimal CC intervention

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call