Abstract
Let $d\geq 2$. The Cheeger constant of a graph is the minimum surface-to-volume ratio of all subsets of the vertex set with relative volume at most 1/2. There are several ways to define surface and volume here: the simplest method is to count boundary edges (for the surface) and vertices (for the volume). We show that for a geometric (possibly weighted) graph on $n$ random points in a $d$-dimensional domain with Lipschitz boundary and with distance parameter decaying more slowly (as a function of $n$) than the connectivity threshold, the Cheeger constant (under several possible definitions of surface and volume), also known as conductance, suitably rescaled, converges for large $n$ to an analogous Cheeger-type constant of the domain. Previously, García Trillos et al. had shown this for $d\geq 3$ but had required an extra condition on the distance parameter when $d=2$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.