Abstract
This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems where transient faults occur in Poisson distribution. In our environment, multiple real-time tasks with different deadlines and harmonic periods are scheduled in the system by rate-monotonic algorithm, and checkpoints are inserted at a constant interval in each task. When a fault is detected, the system carries out rollback to the latest checkpoint and re-executes tasks. The maximum number of re-executable checkpoints and an equation to check schedulability are derived, and the optimal number of checkpoints is selected to maximize the probability of completing all the tasks within their deadlines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computer Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.