Abstract

We propose a model of a battery switching station (BSS) for electric buses (EBs) that captures the predictability of bus operation. We schedule battery charging in the BSS so that every EB arrives to find a battery ready for switching. We develop an efficient algorithm to compute an optimal schedule. It uses dual decomposition to decouple the charging decisions at different charging boxes so that independent subproblems can be solved in parallel at individual charging boxes, making the algorithm inherently scalable as the size of the BSS grows. We propose a direct projection method that solves these subproblems rapidly. Numerical results illustrate that the proposed approach is far more efficient and scalable than generic algorithms and existing solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.