Abstract

The increasing penetration of electric vehicle (EV) at distribution system is expected in the near future leading to rising demand for power consumption. Large scale uncoordinated charging demand of EVs will eventually threatens the safety operation of the distribution network. Therefore, a charging strategy is needed to reduce the impact of charging. This paper proposes an optimal centralized charging schedule coordination of EV to minimize active power losses while maintaining the voltage profile at the demand side. The performance of the schedule algorithm developed using particle swarm optimization (PSO) technique is evaluated at the IEEE-33 Bus radial distribution system in a set time frame of charging period. Coordinated and uncoordinated charging schedule is then compared in terms of active power losses and voltage profile at different level of EV penetration considering 24 hours of load demand profile. Results show that the proposed coordinated charging schedule is able to achieve minimum total active power losses compared to the uncoordinated charging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.