Abstract
This paper extends our previous work on automated detection and classification of neonate EEG sleep stages. In [19] we adapted and integrated a range of computational, mathematical and statistical tools for the analysis of neonatal electroencephalogram (EEG) sleep recordings with the aim of facilitating the assessment of neonatal brain maturation and dismaturity by studying the structure and temporal patterns of their sleep. That work relied on algorithms using a single channel of EEG. The present paper builds on our previous work by incorporating a larger selection of EEG channels that capture both the spatial distribution and temporal patterns of EEG during sleep. Using a multivariate analysis approach, we obtain the “optimal” selection of the EEG channels and characteristics that are most suitable for EEG sleep state separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.