Abstract

Techniques for channel allocation in cellular networks have been an area of intense research interest for many years. An efficient channel allocation scheme can significantly reduce call-blocking and calldropping probabilities. Another important issue is to effectively manage the power requirements for communication. An efficient power control strategy leads to reduced power consumption and improved signal quality. In this paper, we present a novel integer linear program (ILP) formulation that jointly optimizes channel allocation and power control for incoming calls, based on the carrier-to-interference ratio (CIR). In our approach we use a hybrid channel assignment scheme, where an incoming call is admitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as well as that of the new call, will be above a specified value. Our formulation also guarantees that the overall power requirement for the selected channel will be minimized as much as possible and that no ongoing calls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49 cell environment with 70 channels to investigate the effect of different parameters such as the desired CIR. The results indicate that our approach leads to significant improvements over existing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.