Abstract
Consider the following communication scenario. An encoder observes a stochastic process and causally decides when and what to transmit about it, under a constraint on the expected number of bits transmitted per second. A decoder uses the received codewords to causally estimate the process in real time. The encoder and the decoder are synchronized in time. For a class of continuous Markov processes satisfying regularity conditions, we find the optimal encoding and decoding policies that minimize the end-to-end estimation mean-square error under the rate constraint. We show that the optimal encoding policy transmits a $1$-bit codeword once the process innovation passes one of two thresholds. The optimal decoder noiselessly recovers the last sample from the 1-bit codewords and codeword-generating time stamps, and uses it to decide the running estimate of the current process, until the next codeword arrives. In particular, we show the optimal causal code for the Ornstein-Uhlenbeck process and calculate its distortion-rate function. Furthermore, we show that the optimal causal code also minimizes the mean-square cost of a continuous-time control system driven by a continuous Markov process and controlled by an additive control signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.