Abstract

Understanding the mode of generation and the statistical structure of neurological noise is one of the central problems of biomedical signal processing. We have developed a broad class of abstract biological noise sources we call hidden simplicial tissues. In the simplest cases, such tissue emits what we have named generalized van der Ziel-McWhorter (GVZM) noise which has a roughly 1/fα spectral roll-off. Our previous work focused on the statistical structure of GVZM frequency spectra. However, causality of processing operations (i.e., dependence only on the past) is an essential requirement for real-time applications to seizure detection and brain-computer interfacing. In this paper we outline the theoretical background for optimal causal time-domain filtering of deterministic signals embedded in GVZM noise. We present some of our early findings concerning the optimal filtering of EEG signals for the detection of steady-state visual evoked potential (SSVEP) responses and indicate the next steps in our ongoing research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call