Abstract

As flexible resources, cascaded hydropower stations can regulate the fluctuations caused by wind and photovoltaic power. Constructing pumped-storage units between two upstream and downstream reservoirs is an effective method to further expand the capacity of flexible resources. This method transforms cascaded hydropower stations into a cascaded pumped-hydro-energy storage system. In this paper, a flexibility reformation planning model of cascaded hydropower stations retrofitted with pumped-storage units under a hybrid system composed of thermal, wind, and photovoltaic power is established with the aim of investigating the optimal capacity of pumped-storage units. First, a generative adversarial network and a density peak clustering algorithm are utilized to generate typical scenarios to deal with the seasonal fluctuation of renewable energy generation, natural water inflow, and loads. Then, a full-scenario optimization method is proposed to optimize the operation costs of multiple scenarios considering the variable-speed operation characteristics of pumped storage and to obtain a scheme with better comprehensive economy. Meanwhile, the proposed model is retransformed into a mixed-integer linear programming problem to simplify the solution. Case studies in Sichuan province are used to demonstrate the effectiveness of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.