Abstract

Modern videoendoscopes are capable of performing precise three-dimensional (3D) measurements of hard-to-reach elements. An attachable prism-based stereo adapter allows one to register images from two different viewpoints using a single sensor and apply stereoscopic methods. The key condition for achieving high measurement accuracy is the optimal choice of a mathematical model for calibration and 3D reconstruction procedures. In this paper, the conventional pinhole camera models with polynomial distortion approximation were analyzed and compared to the ray tracing model based on the vector form of Snell’s law. We, first, conducted a series of experiments using an industrial videoendoscope and utilized the criteria based on the measurement error of a segment length to evaluate the mathematical models considered. The experimental results confirmed a theoretical conclusion that the ray tracing model outperforms the pinhole models in a wide range of working distances. The results may be useful for the development of new stereoscopic measurement tools and algorithms for remote visual inspection in industrial and medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.