Abstract

The star graph has been show to be an attractive alternative to the widely used n-cube. Like the n-cube, the star graph possesses rich structure and symmetry as well as fault tolerant capabilities, but has a smaller diameter and degree. However, very few algorithms exists to show its potential as a multiprocessor interconnection network. Many fast and efficient parallel algorithms require broadcasting as a basic step. An optimal algorithm for one-to-all broadcasting in the star graph is proposed. The algorithm can broadcast a message to N processors in O(log/sub 2/ N) time. The algorithm exploits the rich structure of the star graph and works by recursively partitioning the original star graph into smaller star graphs. In addition, an optimal all-to-all broadcasting algorithm is developed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.