Abstract
This article proposes an effective optimal bounded ellipsoid (OBE) identification algorithm for neural networks to reconstruct the dynamics of the uncertain Euler-Lagrange systems. To address the problem of unbounded growth or vanishing of the learning gain matrix in classical OBE algorithms, we propose a modified OBE algorithm to ensure that the learning gain matrix has deterministic upper and lower bounds (i.e., the bounds are independent of the unpredictable excitation levels in different regressor channels and, therefore, are capable of being predetermined a priori). Such properties are generally unavailable in the existing OBE algorithms. The upper bound prevents blow-up in cases of insufficient excitations, and the lower bound ensures good identification performance for time-varying parameters. Based on the proposed OBE identification algorithm, we developed a closed-loop controller for the Euler-Lagrange system and proved the practical asymptotic stability of the closed-loop system via the Lyapunov stability theory. Furthermore, we showed that inertial matrix inversion and noisy acceleration signals are not required in the controller. Comparative studies confirmed the validity of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.